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Logarithmic corrections in dynamic isotropic percolation
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Based on the field theoretic formulation of the general epidemic process, we study logarithmic corrections to
scaling in dynamic isotropic percolation at the upper critical dimensier6. Employing renormalization
group methods we determine these corrections for some of the most interesting time dependent observables in
dynamic percolation at the critical point up to and including the next to leading correction. For clusters
emanating from a local seed at the origin, we calculate the number of active sites, the radius of gyration, as
well as the survival probability.
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[. INTRODUCTION theless possible in the form of a solitary wave of activity.
When starting from a punctual seed, this leads to annular
Spreading phenomena occur in nature in many kinds witlgrowth (e.g., fairy rings in two dimensions
examples ranging from epidemics or forest fifgés-5] over Most significantly, perhaps, numerical simulations and
the growth of populationg5,6] and the activity of catalyzers renormalization group methods have contributed to our
[7,8] to the formation of stars and galaxi€3]. In general present understanding of spreading phenomena. Until re-
terms, the spreading of nonconserved agents has the followently, accurate numerical investigations have been limited
ing scenario: An agente.g., an active site of a lattice, an to lower spatial dimensions. However, due to the staggering
infected individual, or a burning tréeandomly activates one pace of hardware improvements and the development of so-
or more of its neighbors. In the next time step these infectegbhisticated algorithms, numerical results for spreading in
neighbors act as agents themselves and so on. Via this éligh dimensions have become availaplel—18. Some of
ementary reaction, the activation spreads out diffusively irthese result§17,18 clearly indicate the importance of loga-
d-dimensional space. Competition between the agents for thiithmic corrections to scaling in the upper critical dimensions
resources of new activations limits their local density. More-d=4 for DP andd=6 for dIP. Analytic work on logarithmic
over, an agent becomes spontaneously deactivated after sog@rections to percolation started not long after renormaliza-
time. The long term behavior of the process, assumed to bion group methods became available. Essdral. [19] de-
emanating from a seed or germ at the origin, depends criermined the logarithmic corrections for the probabilRy
cially on the differencer between the deactivation and the of belonging to an infinite cluster, the clusters’ mean-square
activation rate. For> 7. the process spreads, approaching asize S and the correlation length as functions of the devia-
homogeneous steady state, over the entire spacer€eg  tion from criticality, 7— 7., as well as the logarithmic cor-
the spreading will finally ebb away as an inactive extinctrections at criticality to a “ghost” fieldH as a function of
state is approache@vith possibly a static disturbance of the P, . Aharony[20] investigated logarithmic corrections in the
initial state, but only in a finite volume The critical point  context of universal amplitude ratios. More recently, Ruiz-
7= 7, Separates this endemic absorbing phase from the epi-orenzo[21] presented the logarithmic corrections3andé&
demic active phase. Spreading near 7, constitutes a criti- ~ at criticality as functions of the system size. In an upshot one
cal phenomenon and is described by universal scaling laws:an say that the previous results on logarithmic corrections in
There exist two fundamental universality classes of criti-percolation are(i) restricted to static percolation, and)
cal spreading phenomena depending on the nature of tHemited to the leading correction.
debris of the elementary deactivation process. If the deacti- For another system prominent in statistical physics, viz.,
vated agents can recover so that they may become newlinear polymers, logarithmic corrections observed in simula-
activated(so-called simple epidemicthe process belongs to tions have been very successfully described by renormalized
the directed percolatio(DP) universality clasq10] (for a  field theory[22,23. It turned out, however, that the leading
review see, e.g., Refll]). Here, in the active phase, one can logarithmic corrections are not sufficient to yield a satisfac-
have an epidemic survivinig loco. On the other hand, if the tory agreement with the numerical data. To the contrary, it
debris stays inactive forevéso-called general epidemjeche  was found that it is crucial to include the next to leading
spreading process becomes locally extinct. In this case, theorrection. We expect a similar importance of the second-
process belongs to the dynamic isotropic percolatidif) order correction in the percolation problem.
universality class and the statistics of the clusters formed by The goal of this paper is to present analytical results for
the debris are described by the usual percolation théory dIP in d=6 that are, with reasonable expectation, accurate
reviews see, e.g., Refgl2,13)). Here, the epidemic cannot, enough to yield a satisfactory agreement with numerical
of course, surviven loco, but an infinite epidemic is never- simulations. We derive these results for some of the most
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interesting observables in dynamic percolation, namely, théleren(x,t) is the density of infected particles at tihand
numberN(t) of agents at time generated by a seed at the space coordinate. The variabler is essentially the rate
spacewise and timewise origirx€0,t=0), the survival difference mentioned in the Introductidshifted byr.) and
probability P(t) of the corresponding cluster, as well as thespecifies the deviation from criticalit represents a kinetic
mean distanc&(t) of the agents from the origitradius of  coefficient. The Gaussian random figj¢ix,t) subsumes re-
gyration. action noise and otherwise neglected microscopic detaits

The logarithmic corrections that we study here will not beoverbar indicates averaging over its distribujidis correla-
found in real physical systems because the upper critical dition respects the existence of the absorbing state. Many other
mension 6 for dIP does not coincide with physical dimen-analytic terms are conceivable as contributing to EQsl).
sions,d=2 or d=3. However, our results are sure to be These, however, turn out to be irrelevant in the sense of the
valuable with respect to numerical simulations. Our finalrenormalization group. Especially, a diffusional noise contri-
analytic expressions are well suitable for comparison to nubution, relevant for diffusion limited reactions with multipli-
merical data. Moreover, our results define a nonuniversatative noise, can be neglected.
time scale that signals the onset of asymptotic behavior. This Langevin equations are only a convenient shorthand for a
time scale may be used to assess the effective significance stochastic process. For the application of renormalized field
a given microscopic simulation model for the dIP universal-theory, however, a path integral formulation of the GEP is
ity class. more adequate than the Langevin equati@rl). The dy-

Complementary to the work presented here, we have innamic functional[29—-31], or in a more recent terminology
vestigated logarithmic corrections in DP. Our results on obthe response functional, of the GEP is gi&7,2§ by
servables akin to the quantities studied here are certainly L
equally interesting and will be presented in the near future ~[. 19
[24]. Taking a third route, we explored logarithmic correc- j:J ddth}‘S()‘ lEHT—VZHg S— 25 )S'
tions in static IP with emphasis on transport properties. A (2.2
paper on this subjed¢®5] will be available soon.

The outline of the present paper is the following. In Sec.In deriving 7 from the Langevin equation, one exploits a
Il we briefly review the renormalized field theory of the gen- rescaling form invariance of the response functiogahat
eral epidemic procestGEP and previous renormalization allows to equate andg’. s(x,t) is proportional ton(x,t).
group results on dIP. Moreover, we conduct some genera(xt) is the response field correspondings(e,t). Sin the
considerations about logarithmic corrections in the giverfunctional (2.2) stands for the density of debris§(x,t)
context. Section Il hosts the core of our analysis and con= ) [* dt’s(x,t’). Note that
tains the main results. Section IV concludes the main part of

this paper with a discussion of our results and several re- 3(x,t) > — S(x, — 1) 2.3
marks. Details of our diagrammatic perturbation calculation
are relegated to the Appendix. is a symmetry transformation of the response functigp?a).

J presents a vantage point for a systematic perturbation
calculation in the coupling constagt Most economically,
this calculation can be done by using dimensional regulariza-
tion and minimal subtraction. Using this scheme, the critical
point valuer= 7 is formally set to zero by the perturbational

In this section we briefly review the field theoretic de- €xpansion. Generallyr; is a nonanalytical function of the
scription of the GEP and its renormalization. The aim is tocoupling constany. Thus, we implicitty make the additive
provide the reader with background and to establish notatiofgnormalizationr— 7.— 7. For background on these meth-
as well as known results that we need as we go along. Fugds we refer to Ref$32,33. An appropriate renormalization
thermore, we outline the general structure of the sought aftegcheme is
logarithmic corrections.

Il. RENORMALIZED FIELD THEORY OF THE GEP—A
BRIEF REVIEW AND GENERAL CONSIDERATIONS
ON LOGARITHMIC CORRECTIONS

The GEPF[2,5,6] is a kinetic growth model that was intro- s—8=27Y% 3 8=7V% (2.4a
duced by Grassberg¢26] as a lattice model of dIP. On a
coarse grained scale, the GEP can be minimally formulated NshN=7 VG2 2 -1y (2.4b

by means of the Langevin equation in the Ito sef&d

9—0=2"%2%, G,0?=up’. (2.49
NTI06H) = V2n(x,t) — m(x,t) —gn(x, - . y

Here, the ° symbol indicates un-renormalized quantities;

vt . =6—d measures the deviation from the upper critical di-

X | dvn(xt)+ I, (218 mension. The factos,=T'(1+&/2)/(4m)%? is introduced

exclusively for later conveniencgy is an external inverse

length scale. Note that the renormalizatidi@s4) preserve
L)X )= "1g n(x,t) 8(t—t") S(x—x"). the invariancg2.3). The renormalization factoi®, Z,, and
(2.1b Z,, are known to three-loop ord¢84]. One of ug27] calcu-

036131-2



LOGARITHMIC CORRECTIONS IN DYNAMIC . .. PHYSICAL REVIEW E 68, 036131 (2003

lated Z to two-loop order. In the following we will need the \where we abbreviatedv=u(l). Solving this differential
renormalization factors explicitly to one-loop order, to which equation fore=6—d=0 yields

they are given by
I=I(w):I0w*BS’ﬁ§

- u 4u
Z=1+—+---, Z=14+—+---, (2.59
6e 3e 1 (B5—B2Ba) )
Xexg — B 3 w+O(w) |, (2.10
u 4u ’ ﬂZ
Z,=1+—+--, Z,=1+—+---. (2.5b . . . -
e € wherel is an integration constant. The remaining character-

istics are all of the same structure, namely,
The critical behavior of Green's functionsGy;

—([s]”[s]“>(°”m) is governed by the Gell-Mann—Low renor- dInQ(w)
malization group equatiofRGE) l—5r— =a(w). (2.1

ar(rthmuh,u)=0, (2.6 Here,Qis aplaceholder foZ, Z,Z,, andZ, , respectively.

q is ambiguous fory, y, k, and¢, respectively. Exploiting
Id/dl= Bd/dw we obtain the solution

1 —_——
D#'i‘ E(ny+ n’)/) G

with the differential operator

D, = ud,+ N+ TKd,+ By . (2.7 F{(QZIBZ d163)
B3

Q(w) = Qgw /P2ex w+ O(Wz)l :

The Wilson functions appearing in the RGE are given to (2.12
two-loop order{27,34] by

whereQ, symbolizes a nonuniversal integration constant.

4 1895 u? With the solutions to the characteristics, the scaling be-
Lo §u+ 54 +9In3-5In4)7¢ 16’ (2.83 havior of Green'’s functions is found to be
5 1 37 G (Xt mun, ) = (ul n(d+2)/2+?1(d—2)/2z w2
Y= EU"' 2_16U2, (28b) n,n({ } /~L) (M ) i (w)
XZ(wW)"2G ({1 ux, Zy (W)
5 193 2y 1. 2
(2.13
Y 7 2 The flow parameter introduced via the characteristics is arbi-
(=~ =~ put| 5 T9IN3-5In4 /=5, trary. Thus, we have a freedom of choice that can be ex-

(2.89  Ploited to rescale the relevant variables, viz.t, and L
so that they acquire a finite asymptotic value. For the goals

7 671 414031 3u? pursued in this paper, an appropriate choice is
B=—eu+ s;u*— —-u +< +93§(3))—.

whereXg is a constant of order unity. With this choieeand

Note that we have statefl to three-loop order because the :
ed P | tend to zero fo u?t—o. Based on our choic€.14 we

high-order contribution improves our quantitative predic-. _ . _
tions. In the remainder we will adopt a convenient abbrevi-IntrOduce the convenient time variable
ated notation for the Wilson functions of the typéu)=f, B
+f,u+fou+ ..., with f standing fory, 3/ K, ¢, and g, s= 72In(t/to)— In(t/ty), (2.15
respectively. The meaning of the coefficiefits f;, and so
on should be evident.

The RGE can be solved by the method of characteristlcs(2 f&e;‘ﬁ:{;)((zo 1'% aspneocr:gl?zl\ézr?ce%l tm\jvi céc;?stant From Egs.
To this end one introduces a flow parametteand sets up o
characteristic equations that describe how the scaling param- s=w™1—a;Inw+a,w+O(w?) (2.16
eters transform if the external momentum scale is changed

by varying ;(I)=MI. The characteristic for the dimension- for the derived time variable. The constamrts and a, are
less coupling constant reads given by

w B2{1—2B3 1195
157 =Bw), 2.9 a1=" s = gy —237L03, (2173
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(1Bs— (B2 BaBa~ B3 = e (nt )
a,= + Z(w)Z(w)]"cexp —=———Inw
2 25, 52 [Z(w)Z(w)] 25,
(v2+72)B2— (1t 71)
_1766273 10n2-9In3 27%(3) _ I PECRIE: '822 ¥ rbs),,
“Toleoed 64 | 56  [080% &
(2.170
+0O(w?)|. (3.2
Using Eq.(2.16 we obtain for the dimensionless coupling
constant as a function of time the expression A perturbation expansion of the Green’s functi®h ; brings
about an amplitudé\(X,) that we define via
In In’s Ins 1
w=stexga——+0| =, 22 2| (219 G1.1(0=0Xo;0M; 1,1 <[ 1+ Ay(Xo)w+O(W?)].
S $? & & (3.3

- ) This amplitude follows from our one-loop calculation pre-
EXplOItIng Eqs(213, (21@, (212), and (21& we find sented in Appendix as
that the observables to be considered are of the form
An(Xg) = 3 oA 3 _In2 3.4
n( o)—g t5-37 ] (3.4

2 "2 '

clns+c’ In?s Ins 1
¢
s2's?'s

A=Aqjexp as+blins+ _ _
where we used the shorthand notatigs In Xy+Cg, with

(2.19 Cg being Euler’s constant. Collecting Eq®8.1)—(3.3), we
find
Ay is, like tg, a nonuniversal constard, b, ¢, andc’ are

— -1 a, 2
universal numbersa stems from mean field theorlg.andc N(t)=No(w™"+By)™Nexg cyw+ O(w?)]

represent one- and two-loop renormalization group results, bylns+cy
respectively.c’ comprises contributions from the Wilson =Nj(s+By)N 1+ ——

functions to two-loop order as well as an amplitude to be S

determined in an explicit one-loop calculation @f This 5

amplitude depends oYy, as dos and.A,. Over all, a varia- + '”_S In_s i” 3.5
tion of X, leavesc’ invariant. 2 's2's?) | '

where Ng is @ nonuniversal constaniiy is a nonuniversal
lll. LOGARITHMIC CORRECTIONS constant slightly different fromNy, and By=Ay/ay. The
FOR THE OBSERVABLES OF INTEREST first row of Eq. (3.5 and the resul{2.16) constitute a para-

Equipped with important intermediate results as well agnetric representation of the tupl&(s) that is suitable for
some knowledge of the structure of the Green’s function$omparison to numerical simulations. The second row of Eq.
Gn7, We next determine the sought after logarithmic correc{(3-5 shows the more traditional form. The constaafs,
tions. Since we already know the general form of the resultsPn: Cn. @andBy are given by
this part will be fairly brief.

+5, 3
ay=— ”2 n_ ;-0214286, (369
A. Number of active particles B2
The number of active particles generated by a seed at the 2B3— {18, 1195
origin is given at criticalityr=0 by by=an 28, 2352 —0.508078, (3.6b
N(t)=f d?% Gy 1(X,t;0,U; N, 1) Y2+ 2 Y1ty
Cn= ~—Ps3
~ 283, 235
:[Z(W)Z(W)]mf d(uh)* 365 9In3-5In4
=— +
X Gy 1(l wr, Zy (W) (1 2)2\t;00; 1,1) 1568 112
=[Z(W)Z(W)]¥%G1 (q=0X0;0w;1,1). (3.1 =—0.206 387, (3.60
B —7 Z 3 _In2 =17 2.22066. (3.6
Specializing solutior(2.12 to Q=Z andQ=Z, we obtain NTg|Et T g TR 2 - (360
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Note from Eqs(2.195 and(3.5) that the arbitrary constarf ~ we find

could be eliminated by a rescaling of the nonuniversal time

constantty. This finding will also apply to the remaining t~'R?=R3(w 1+ Bg)2Rexp(crw+ O(W?))
results stated below.

At this point we would like to warn against attempts to I A bgrIns+cg
deduce the logarithmic corrections for dynamic quantities =Ro*(s+Bp)™ 1+ ———
from the logarithmic corrections calculated for static perco-
lation. Grassbergdi 5], for example, exploited the results of 2
: ; In“s Ins 1
Essamet al. [19] via replacingr by 14 on the grounds that — =5 | (3.11)
the critical exponenty; for the correlation time is one in s¢ s§°S

mean-field theory. This reasoning leads N¢t)~[In(t)]?”

[35]. From Egs.(3.5 and (3.6a, however, we see that the with RZ and Rj? being nonuniversal amplitudes. Here the
correct result, to leading order, N(t)~ [In(t/to)]3’14 By  constantsg, bR, Cr, andBg=Ag/ag are given by
merely using the mean-field relation betweerandt one

misses contributions to the leading logarithmic term stem- o1

ming from renormalization factors including [cf. Eg. ar=——===0.166 666, (3.12a
(3.2)]. SinceZ is absent in static percolatigB6], one cannot B2 6

deduce the logarithmic behavior of the dynamic quantity

N(t) from the known results for static percolation. Likewise, 2B3— (18> 1195

it should not be attempted to combine our dynamic results, br=ar 28, 3024 —0.395172,

e.g., those foN(t) andR(t), to obtain predictions on loga- (3.12h
rithmic corrections in static percolation.

B. Radius of gyration _bo_Gfs_ 937 9In3-Sh4_ ) oceas
: 9y CrR™ g2 6048 112 ’

The mean square distance from the origin of the active 2 (3.129
particles is defined as '

fdd °G t B—7 Z 2_In2 =1.752—1.33995. (3.12
) XX 1,1(Xl ) aln Glyl(qyt) R_4 3 7 e . . ( . d
R(t)%= =— P .
2d f d9% Gy 4(x,1) q q=0 _ -
3.7 C. Survival probability
' As shown in Ref[37], the survival probability of an ac-
From the scaling forn{2.13), it follows for 7=0 that tive cluster emanating from a seed at the origin is given by
=— i *k]\]“ —
9InGy4(q,t) P(t) klfl<e s(—1)), (3.13
992 4=0
. 5 where V= [d%s(x,0). For the purpose of actual calcula-
:0"‘ Gya((lw) 70, Zy (W) (1 w)“At;0w; 1,1) tions, it is convenient to rewrite E43.13 as
49° 40
‘ P(t)=—lim(s(—t))x=—Go1(—t, 7,k=00,u;\, ),
_,9InGy4(0,Xq;0w;1,1) k=
- 2 . . (3.9 (3.14
= loco

ere(---) stands for averaging with respect to the re-
§ponse functional7, that is obtained upon augmenting the
original response functiondR.2) by a sourcek(t) =kd(t)
conjugate to the field:

Incorporating the solutions to the appropriate characteristlc
and the results of the Appendix,

a
— —ING14(q N p?t=X0;0W;1,1)| =g
dq

jk=j+j dtk(t)Mt). (3.19
=Xo[1+ Ar(Xg)W+O(W?)], (3.9
with With this source present, one no longer ksis=0. To avoid
tadpoles in our perturbation calculation, we perform a shift
’ 2 In2 's—'s+M so that(s)=0 is restored. This procedure leads to
Ar(Xo) = 2_4( 73" 7) ’ 310 the new response functional
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1 know of any work that has determined logarithmic correc-
S— ES) )S tions in percolatior(static or dynamic, IP or DPbeyond the
leading corrections. Here we went beyond the leading terms,
and hence we are confident that our results compare well
: (3.18  with simulations, perhaps even quantitatively. For linear
polymers it turned out that the knowledge of the leading

Based on this functional we calcula@, ;=M to one-loop logarithmic correction is not sufficient for a good agreement
order. Some details of this calculation are in the AppendixPetween simulation data and theory. Rather, the next to lead-

- J -
jsz ddxdt )\S()\_15+(T—9M—V2)+g

~ - ~ NO_,
+NgMsS+ —M+)\TM—7M +kjs

We obtain ing corrections turned out to be crucial in comparing numeri-
cal and analytical results. We expect the same for percola-
Goa(—Xo,0k=0,w; 1, Docw™ Y 1+ Ap(Xo)w+O(wW?)], tion. Indeed, preliminary Monte Carlo results corroborate

(3.17  this expectatio17,18.
Our results define a nonuniversal time sdgleFor times
t greater tharty, we expect the validity of our asymptotic
5 111n2 expansions. The time scalgcan be utilized as a measure of
Ap(Xg) = 5( Z+1- 5 ) (3.18 quality for different microscopic models of dynamical perco-
lation. Thus, our results may guide those performing simula-
tions in choosing the most efficient model.
It is interesting to note that the time scajehas an analog
in quantum chromodynamics. For times greater tharthe
P(t)=—Z(W) Y2 u1)2Gg o —Xo,000,w;1,1). (3.19 model pecomes asymptotically free. Thqs, with the exchange
’ of an infrared-free theory to an ultraviolet-free theoty,

with the amplitudeAp(X,) reading

Recalling the scaling forni2.13 and our choice for the flow
parameter we deduce that, for 0,

Collecting, we then obtain corresponds to the hadronization scale of quantum chromo-
) ) dynamics. The dependence of our results on this dimensional
tP(t)=Po(w ™+ Bp)®exd cpw+ O(w?)] nonuniversal parametdy, parallels therefore the phenom-

enon of dimensional transmutation in renormalizable asymp-
totically free quantum field theories that are naively scale-
free.

Our results feature a mutual nonuniversal constant, viz.,
(3.20 Z. This constant could be eliminated by rescaligg One
might be tempted to think that one could eliminate the entire
amplitudesAy(X,), and so on, from our results by rescaling
to, and that the calculation of the amplitudes is hence super-
5 fluous. One has to keep in mind, however, that one has to
=—=0.357143, (3.213 chooset consistently for all observables. Thus, one cannot

—P}(s+Bp)?| 1+ — ==l
0 P s2 g% 'g?

bpIns+cp (Inzs Ins 1)
—+ J—

P, and P| are simply related nonuniversal amplitudes. The
constantsaap, bp, cp, andBp=Ap/ap are given by

24+ B
ap=————=

i 2B, 14 remove the amplitudes simultaneously from all the observ-
ables, and their calculation is indeed necessary.
bp=ap 2Bs—{1B2 —_ 5975: —0.846797 We refrain from eliminatingZ from our results because it
2p3; 7056 ' might be exploited, due to its nonuniversality, as a fit param-

(3.21b eter. By fitting Z one can compensate partially for the effect
of higher order terms that have been neglected in our calcu-

Y220 20—7 lations. In this sense one can think Bfas mimicking these
°=28, +P3 252 higher order terms.
2 When written as an explicit function of time, the observ-
1637 9In3-5In4 ables of interest have fairly complicated formulas. Using the
12112 112 parametric representation in terms of the effective coupling
constantw eases this situation. Moreover, the time and the
=0.089607, (3.210 observables possess a nicely systematic expansion so
that it is straightforward to keep track of the different orders
7 11In2 in perturbation theory. In the traditional from, the orders are
BP:Z(Z+1_ 5 ) =1.752-0.918617. not so clear cut because nested functions of logarithms have
(3.210 to be compared. The parametric representations can be con-
veniently compared to simulations. Essentially, one just
IV. DISCUSSION OF RESULTS needs to make parametric plots of the tupldss), (R,s),
AND CONCLUDING REMARKS and (P,s), and then compare the numerical data to these

plots.
As far as time dependent observables in percolation are In order to improve the accuracy of our results, one needs
concerned, we are not aware of any previous analytic worla refined quantitative knowledge of the Wilson functions.
addressing logarithmic corrections. More general, we do noWhereas thes expansion results for the critical percolation
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q-p

q
tr—=0 =

FIG. 2. Dyson equatiofA4) to one-loop order.

FIG. 1. Self-energy(q,t) at one-loop order. After integrating out the loop momentum we can rewrite
3(q,t) as
exponents have been improved by resummation techniques
such as PadBorel resummatiori34], this kind of refine- (AQ)?

ment has not yet been achieved for the percolation Wilson 2(q,t)=- (4 )dlz()\t)l a2
functions. Here lies an opportunity for useful future work. m
Another possibility for future work is to improve the results 1 expl—M[(1+8)7+S@/(1+5)]}
on static percolation mentioned in the Introduction by calcu- xf ds iz .
lating the next to leading logarithmic corrections. With the 0 (1+s)

kind of field theoretic methods that we applied here, this is a (A3)

reasonable task. _ ) For our purposes we need Green’s or connected correla-
Apparently, firm numerical results that are suitable foryqn fnctions rather than vertex functions. Hence, we have
comparison to our analytical results are not available yet. We, qnsider Feynman diagrams with external legs attached

hqpe,_ hovyever, that our work triggers increasing efforts i_nrather than amputated diagrams. The Green’s funipnis
this direction, and that corresponding numerical results willyatermined by the Dyson equation ’

be available in the near future.
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APPENDIX: EXPLICIT CALCULATION OF GREEN'’S

uAplt)?? (1 ds
FUNCTIONS G14(9,t)=G(q,t)

Y Tare Jo (119

In this appendix we outline our one-loop calculation of

the scaling functions belonging to the Green’s functiGng 1 _
andGg ;. In particular, we compute the amplitudag(Xo), xfodx(l—x)xl Pexa(s)x]|.  (AS5)
Ap(Xp), andAg(Xq) entering the logarithmic corrections.
Here, we used the shorthand notation
1. Green’s function G, 4 5
A first step of any diagrammatic perturbation calculation a(s)= q__(1+s)7- At (AB)
is, of course, the determination of the constituting elements. 1+s

From the response function&.2) we gather the Gaussian
P €.2 g Now, we setr=0 and expand Eq(A5) to orderg?. The

t . . . :
propagator integrations are easily performed. Afterexpansion we get
G(q,t)=6(t)exd —N(7+g?)t (A1)

(g (tyexd —A(7+g9)t] ) UOP)PI (3 9 In2
and the three-leg verticegy and —\2g6a(t—t’), whered(t) G14(q.0=GC(a)| 1+ T(1+e2) |22 T16~ 8
denotes the step function. With these elements, the self-
energy 2(q,t) is given at one-loop order by the diagram _(l_ 1_ In_2) 92t (A7)
depicted in Fig. 1. This diagram stands for the mathematical 12¢ 36 24 '
formula

The next step is to remove the poles by employing the

E(q,t)=—)\3gzjtdt’JG(p,t’)G(q—p,t). (A2) renorm_alization scheme2.4). Letting G; 1—Gy 1, A—NX\,
0 p and using
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a) aprP— [N L+ 7—gM(t) +g2]G(q,t,t" )=\ "18(t—t').
(A13)

To avoid tadpolesM (t) has to satisfy the differential equa-
tion

M (t)— A 7M (1) + 7\2—g|\7| (1)2—k(t)+T(t)=0. (A14)

b)

- At one-loop order, the tadpolg(t) is given by the diagram
FIG. 3. (a) The new vertex—\?gMé(t—t’) and (b) the one-  shown in Fig. 3b).

loop tadpole diagram (D). The initial and terminal conditions for the fields necessi-
tate the ansatM (t)=—6(—t)K(—t) L. The type of the
Gyi= (zz)l/zéll:<1_ 3_U)é11 (A8) source term,k(t)=k5(_t) wiFh .kﬂoo, Qemands t.he initi_al
' ' de ' condition K(0)=0. With this information, the differential
equation(A14) can be transformed without much effort into
as well as the integral equation
o~ 7u
N=(Z/2)Y\ = 1_5)7" (A9) g i , g
K(t)+ 5-=e" fdt’e’“‘ K(t")2T(—t")+ |-
2T 0 27

we observe that the poles are indeed removed. For the (A15)
renormalized Green’s function we obtain

3u 3 In2 At mean field level, the solution to E¢AL5) is given by
Gi(a,)=G(q,t){ 1+ —| INn(Au?t)+Cg+ = — —
' 8 2 3

g

7u 2 In2 K (t):_(e)\Tt_l) (A16)

- 2 o 2 0 .
24(|n()\,u t)+Cg 377 \Q t]. 27
(A10)

Inserting the correspondin{!l‘/lo(t)=—KO(—t)‘l into the
Two results important for the logarithmic correction can differential equation(A13), we find the modified Gaussian

be extracted from EqA10). Upon settingg=0 we find propagator
3 3 In2 5
Glyl(q=0,)\,u¢2t=Xo;7-=0,W;1,1)=1+ g Z+ E_ ? w, _ ( KO(—t) ) 2)
Go(g,t,t")=6(t—t")| —| exgA(7— t—t")].
ALD (At =0t | XM (=)t t)]

) . (A17)
and hence the amplitudAdy(Xy) as stated in Eq(3.3).

Moreover, we get . . .
Having the modified Gaussian propagator at our demand,

we are now in the position to calculate the diagram depicted

J
—Xglﬁln G1i(gAp’t=Xq; 7= 0w;1,1)|g2-0 in Fig. 3(b). Eventually, we obtain
q
=1 72 2 In2 Al2 2 3~2 72'[ ’ ‘ "
= +Zl 377 w, ( ) K()“T(—t)=A>gKo(t) fodt t’dt
which leads to our result fohg(Xg) given in Eq.(3.10. XKo(t')Ko(t")zexq)\q-(zt—t’—t”)]

4 2t—t' —t” dr2
2. Green’s function Gg , [4mN\(2t—t'—t")]

Now we determineGy; as required in Eq(3.14. The (A18)

diagrammatic elements associated with the functi¢ddl

comprise the two vertices encountered above. In additionThe further evaluation of EQA18) is fairly straightforward
there is a third vertex, viz., the one depicted in Fige)3The  for 7=0. Away from criticality, the calculation is more chal-
Gaussian propagator for the new functional has to be detetenging and will be addressed in a future publicati@8].
mined from the differential equation Here, we find forr=0 and aftere expansion
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3 el2
K(t)ZT(—t)Z _ M( o

5 11In2
(47)92 8 8 16)

(A19)

Insertion of this intermediate result into EGA15) yields

B g)\t[ u(Aut)?

. 5 5 11In2
U= 1" Tave2 -

7. '8 8

(A20)

PHYSICAL REVIEW E 68, 036131 (2003

in Eq. (A20). The renormalizedk(t) reads

11In2
5 .

gAt Su 5
K(t)ZT 1—§ In(\ut)+Cg+1—

(A21)

Exploiting Gg 1(—t) =K(t) "' and A u?t=X, as well as re-
calling the definition ofZ, we finally obtain

Next, we renormalize. Indicating the consistency of our pre-

vious steps, the appropriate combination of renormalization

factors ¢Z/Z,) " Y?=1+5u/(4e)+--- cancels thes pole

(477)3/2)(0 ,
— Goa(—Aut=Xp;7=0w;1,1)
5 11In2
=w 2 1+§ Z+1— 5 wi. (A22)
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