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Logarithmic corrections in dynamic isotropic percolation
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Based on the field theoretic formulation of the general epidemic process, we study logarithmic corrections to
scaling in dynamic isotropic percolation at the upper critical dimensiond56. Employing renormalization
group methods we determine these corrections for some of the most interesting time dependent observables in
dynamic percolation at the critical point up to and including the next to leading correction. For clusters
emanating from a local seed at the origin, we calculate the number of active sites, the radius of gyration, as
well as the survival probability.
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I. INTRODUCTION

Spreading phenomena occur in nature in many kinds w
examples ranging from epidemics or forest fires@1–5# over
the growth of populations@5,6# and the activity of catalyzers
@7,8# to the formation of stars and galaxies@9#. In general
terms, the spreading of nonconserved agents has the fol
ing scenario: An agent~e.g., an active site of a lattice, a
infected individual, or a burning tree! randomly activates one
or more of its neighbors. In the next time step these infec
neighbors act as agents themselves and so on. Via thi
ementary reaction, the activation spreads out diffusively
d-dimensional space. Competition between the agents for
resources of new activations limits their local density. Mo
over, an agent becomes spontaneously deactivated after
time. The long term behavior of the process, assumed to
emanating from a seed or germ at the origin, depends
cially on the differencet between the deactivation and th
activation rate. Fort.tc the process spreads, approachin
homogeneous steady state, over the entire space. Fort,tc
the spreading will finally ebb away as an inactive extin
state is approached~with possibly a static disturbance of th
initial state, but only in a finite volume!. The critical point
t5tc separates this endemic absorbing phase from the
demic active phase. Spreading neart5tc constitutes a criti-
cal phenomenon and is described by universal scaling la

There exist two fundamental universality classes of cr
cal spreading phenomena depending on the nature of
debris of the elementary deactivation process. If the dea
vated agents can recover so that they may become n
activated~so-called simple epidemic!, the process belongs t
the directed percolation~DP! universality class@10# ~for a
review see, e.g., Ref.@11#!. Here, in the active phase, one ca
have an epidemic survivingin loco. On the other hand, if the
debris stays inactive forever~so-called general epidemic!, the
spreading process becomes locally extinct. In this case,
process belongs to the dynamic isotropic percolation~dIP!
universality class and the statistics of the clusters formed
the debris are described by the usual percolation theory~for
reviews see, e.g., Refs.@12,13#!. Here, the epidemic canno
of course, survivein loco, but an infinite epidemic is never
1063-651X/2003/68~3!/036131~9!/$20.00 68 0361
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theless possible in the form of a solitary wave of activi
When starting from a punctual seed, this leads to ann
growth ~e.g., fairy rings in two dimensions!.

Most significantly, perhaps, numerical simulations a
renormalization group methods have contributed to
present understanding of spreading phenomena. Until
cently, accurate numerical investigations have been lim
to lower spatial dimensions. However, due to the stagge
pace of hardware improvements and the development of
phisticated algorithms, numerical results for spreading
high dimensions have become available@14–18#. Some of
these results@17,18# clearly indicate the importance of loga
rithmic corrections to scaling in the upper critical dimensio
d54 for DP andd56 for dIP. Analytic work on logarithmic
corrections to percolation started not long after renormali
tion group methods became available. Essamet al. @19# de-
termined the logarithmic corrections for the probabilityP`

of belonging to an infinite cluster, the clusters’ mean-squ
sizeS and the correlation lengthj as functions of the devia
tion from criticality, t2tc , as well as the logarithmic cor
rections at criticality to a ‘‘ghost’’ fieldH as a function of
P` . Aharony@20# investigated logarithmic corrections in th
context of universal amplitude ratios. More recently, Ru
Lorenzo@21# presented the logarithmic corrections toSandj
at criticality as functions of the system size. In an upshot o
can say that the previous results on logarithmic correction
percolation are~i! restricted to static percolation, and~ii !
limited to the leading correction.

For another system prominent in statistical physics, v
linear polymers, logarithmic corrections observed in simu
tions have been very successfully described by renormal
field theory@22,23#. It turned out, however, that the leadin
logarithmic corrections are not sufficient to yield a satisfa
tory agreement with the numerical data. To the contrary
was found that it is crucial to include the next to leadi
correction. We expect a similar importance of the seco
order correction in the percolation problem.

The goal of this paper is to present analytical results
dIP in d56 that are, with reasonable expectation, accur
enough to yield a satisfactory agreement with numeri
simulations. We derive these results for some of the m
©2003 The American Physical Society31-1
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interesting observables in dynamic percolation, namely,
numberN(t) of agents at timet generated by a seed at th
spacewise and timewise origin (x50,t50), the survival
probability P(t) of the corresponding cluster, as well as t
mean distanceR(t) of the agents from the origin~radius of
gyration!.

The logarithmic corrections that we study here will not
found in real physical systems because the upper critica
mension 6 for dIP does not coincide with physical dime
sions, d52 or d53. However, our results are sure to b
valuable with respect to numerical simulations. Our fin
analytic expressions are well suitable for comparison to
merical data. Moreover, our results define a nonunive
time scale that signals the onset of asymptotic behavior. T
time scale may be used to assess the effective significan
a given microscopic simulation model for the dIP univers
ity class.

Complementary to the work presented here, we have
vestigated logarithmic corrections in DP. Our results on
servables akin to the quantities studied here are certa
equally interesting and will be presented in the near fut
@24#. Taking a third route, we explored logarithmic corre
tions in static IP with emphasis on transport properties
paper on this subject@25# will be available soon.

The outline of the present paper is the following. In S
II we briefly review the renormalized field theory of the ge
eral epidemic process~GEP! and previous renormalizatio
group results on dIP. Moreover, we conduct some gen
considerations about logarithmic corrections in the giv
context. Section III hosts the core of our analysis and c
tains the main results. Section IV concludes the main par
this paper with a discussion of our results and several
marks. Details of our diagrammatic perturbation calculat
are relegated to the Appendix.

II. RENORMALIZED FIELD THEORY OF THE GEP—A
BRIEF REVIEW AND GENERAL CONSIDERATIONS

ON LOGARITHMIC CORRECTIONS

In this section we briefly review the field theoretic d
scription of the GEP and its renormalization. The aim is
provide the reader with background and to establish nota
as well as known results that we need as we go along.
thermore, we outline the general structure of the sought a
logarithmic corrections.

The GEP@2,5,6# is a kinetic growth model that was intro
duced by Grassberger@26# as a lattice model of dIP. On
coarse grained scale, the GEP can be minimally formula
by means of the Langevin equation in the Ito sense@27#

l21ṅ~x,t !5¹2n~x,t !2tn~x,t !2gn~x,t !l

3E
2`

t

dt8n~x,t8!1z~x,t !, ~2.1a!

z~x,t !z~x8,t8!5l21g8n~x,t !d~ t2t8!d~x2x8!.
~2.1b!
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Heren(x,t) is the density of infected particles at timet and
space coordinatex. The variablet is essentially the rate
difference mentioned in the Introduction~shifted bytc) and
specifies the deviation from criticality.l represents a kinetic
coefficient. The Gaussian random fieldz(x,t) subsumes re-
action noise and otherwise neglected microscopic details~the
overbar indicates averaging over its distribution!. Its correla-
tion respects the existence of the absorbing state. Many o
analytic terms are conceivable as contributing to Eqs.~2.1!.
These, however, turn out to be irrelevant in the sense of
renormalization group. Especially, a diffusional noise con
bution, relevant for diffusion limited reactions with multipli
cative noise, can be neglected.

Langevin equations are only a convenient shorthand fo
stochastic process. For the application of renormalized fi
theory, however, a path integral formulation of the GEP
more adequate than the Langevin equation~2.1!. The dy-
namic functional@29–31#, or in a more recent terminology
the response functional, of the GEP is given@27,28# by

J5E ddxdtl s̃S l21
]

]t
1~t2¹2!1gS S2

1

2
s̃D D s.

~2.2!

In deriving J from the Langevin equation, one exploits
rescaling form invariance of the response functionalJ that
allows to equateg andg8. s(x,t) is proportional ton(x,t).
s̃(x,t) is the response field corresponding tos(x,t). S in the
functional ~2.2! stands for the density of debris,S(x,t)
5l*2`

t dt8s(x,t8). Note that

s̃~x,t !↔2S~x,2t ! ~2.3!

is a symmetry transformation of the response functional@27#.
J presents a vantage point for a systematic perturba

calculation in the coupling constantg. Most economically,
this calculation can be done by using dimensional regular
tion and minimal subtraction. Using this scheme, the criti
point valuet5tc is formally set to zero by the perturbation
expansion. Generally,tc is a nonanalytical function of the
coupling constantg. Thus, we implicitly make the additive
renormalizationt2tc→t. For background on these meth
ods we refer to Refs.@32,33#. An appropriate renormalization
scheme is

s→s°5Z1/2s, s̃→ s̃°5Z̃1/2s̃, ~2.4a!

l→l° 5Z21/2Z̃1/2l, t→t°5Z̃21Ztt, ~2.4b!

g→g°5Z̃23/2Zu
1/2g, G«g25um«. ~2.4c!

Here, the ° symbol indicates un-renormalized quantities«
562d measures the deviation from the upper critical
mension. The factorG«5G(11«/2)/(4p)d/2 is introduced
exclusively for later convenience;m is an external inverse
length scale. Note that the renormalizations~2.4! preserve
the invariance~2.3!. The renormalization factorsZ̃, Zt , and
Zu are known to three-loop order@34#. One of us@27# calcu-
1-2
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latedZ to two-loop order. In the following we will need th
renormalization factors explicitly to one-loop order, to whi
they are given by

Z̃511
u

6«
1•••, Z511

4u

3«
1•••, ~2.5a!

Zt511
u

«
1•••, Zu511

4u

«
1•••. ~2.5b!

The critical behavior of Green’s functionsGn,ñ

5^@s#n@ s̃# ñ& (cum) is governed by the Gell-Mann–Low reno
malization group equation~RGE!

FDm1
1

2
~ng1ñg̃ !GGn,ñ~$r ,t%;t,u;l,m!50, ~2.6!

with the differential operator

Dm5m]m1lz]l1tk]t1b]u . ~2.7!

The Wilson functions appearing in the RGE are given
two-loop order@27,34# by

g52
4

3
u1S 1895

54
19 ln 325 ln 4D u2

16
, ~2.8a!

g̃52
1

6
u1

37

216
u2, ~2.8b!

k5
5

6
u2

193

108
u2, ~2.8c!

z5
g2g̃

2
52

7

12
u1S 1747

54
19 ln 325 ln 4D u2

32
,

~2.8d!

b52«u1
7

2
u22

671

72
u31S 414 031

2592
193z~3! D 3u4

16
.

~2.8e!

Note that we have statedb to three-loop order because th
high-order contribution improves our quantitative pred
tions. In the remainder we will adopt a convenient abbre
ated notation for the Wilson functions of the typef (u)5 f 0

1 f 1u1 f 2u21•••, with f standing forg, g̃, k, z, andb,
respectively. The meaning of the coefficientsf 0 , f 1, and so
on should be evident.

The RGE can be solved by the method of characterist
To this end one introduces a flow parameterl and sets up
characteristic equations that describe how the scaling pa
eters transform if the external momentum scale is chan
by varying m̄( l )5m l . The characteristic for the dimension
less coupling constantu reads

l
dw

dl
5b~w!, ~2.9!
03613
-
i-

s.

m-
d

where we abbreviatedw5ū( l ). Solving this differential
equation for«562d50 yields

l 5 l ~w!5 l 0w2b3 /b2
2

3expF2
1

b2w
1

~b3
22b2b4!

b2
3

w1O~w2!G , ~2.10!

wherel 0 is an integration constant. The remaining charac
istics are all of the same structure, namely,

l
d ln Q̄~w!

dl
5q~w!. ~2.11!

Here,Q is a placeholder forZ, Z̃, Zt , andZl , respectively.
q is ambiguous forg, g̃, k, andz, respectively. Exploiting
ld/dl5bd/dw we obtain the solution

Q̄~w!5Q0wq1 /b2expF ~q2b22q1b3!

b2
2

w1O~w2!G ,

~2.12!

whereQ0 symbolizes a nonuniversal integration constant
With the solutions to the characteristics, the scaling

havior of Green’s functions is found to be

Gn,ñ~$x,t%;t,u;l,m!5~m l !n(d12)/21ñ(d22)/2Z~w!n/2

3Z̃~w! ñ/2Gn,ñ„$ lmx,Zl~w!

3~ lm!2lt%;Zt~w!t/~m l !2,w;1,1….

~2.13!

The flow parameter introduced via the characteristics is a
trary. Thus, we have a freedom of choice that can be
ploited to rescale the relevant variables, viz.,x, t, andt21,
so that they acquire a finite asymptotic value. For the go
pursued in this paper, an appropriate choice is

Zl~w!~ lm!2lt5X0 , ~2.14!

whereX0 is a constant of order unity. With this choicew and
l tend to zero forlm2t→`. Based on our choice~2.14! we
introduce the convenient time variable

s5
b2

2
ln~ t/t0!5

7

4
ln~ t/t0!, ~2.15!

where t0}X0 is a nonuniversal time constant. From Eq
~2.10! and ~2.12!, specialized toZl , we get

s5w212a1ln w1a2w1O~w2! ~2.16!

for the derived time variable. The constantsa1 and a2 are
given by

a15
b2z122b3

2b2
5

1195

504
52.371 03, ~2.17a!
1-3
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a25
z1b32z2b2

2b2
1

b2b42b3
2

b2
2

5
1 766 273

1 016 064
1

10 ln 229 ln 3

64
1

279z~3!

56
57.680 98.

~2.17b!

Using Eq.~2.16! we obtain for the dimensionless couplin
constant as a function of time the expression

w5s21expFa1

ln s

s
1OS ln2s

s2
,
ln s

s2
,

1

s2D G . ~2.18!

Exploiting Eqs.~2.13!, ~2.10!, ~2.12!, and ~2.18! we find
that the observables to be considered are of the form

A5A0expFas1b ln s1
c ln s1c8

s
1OS ln2s

s2
,
ln s

s2
,

1

s2D G .

~2.19!

A0 is, like t0, a nonuniversal constant.a, b, c, and c8 are
universal numbers.a stems from mean field theory.b andc
represent one- and two-loop renormalization group resu
respectively.c8 comprises contributions from the Wilso
functions to two-loop order as well as an amplitude to
determined in an explicit one-loop calculation ofA. This
amplitude depends onX0, as dos andA0. Over all, a varia-
tion of X0 leavesc8 invariant.

III. LOGARITHMIC CORRECTIONS
FOR THE OBSERVABLES OF INTEREST

Equipped with important intermediate results as well
some knowledge of the structure of the Green’s functio
Gn,ñ , we next determine the sought after logarithmic corr
tions. Since we already know the general form of the resu
this part will be fairly brief.

A. Number of active particles

The number of active particles generated by a seed a
origin is given at criticalityt50 by

N~ t !5E ddxG1,1~x,t;0,u;l,m!

5@Z~w!Z̃~w!#1/2E ddx~m l !d

3G1,1„lmr ,Zl~w!~ lm!2lt;0,w;1,1…

5@Z~w!Z̃~w!#1/2G1,1~q50,X0 ;0,w;1,1!. ~3.1!

Specializing solution~2.12! to Q5Z andQ5Z̃, we obtain
03613
s,

e

s
s
-
s,

he

@Z~w!Z̃~w!#1/2}expF ~g11g̃1!

2b2
ln w

1S ~g21g̃2!b22~g11g̃1!b3

2b2
2 D w

1O~w2!G . ~3.2!

A perturbation expansion of the Green’s functionG1,1 brings
about an amplitudeAN(X0) that we define via

G1,1~q50,X0 ;0,w;1,1!}@11AN~X0!w1O~w2!#.
~3.3!

This amplitude follows from our one-loop calculation pr
sented in Appendix as

AN~X0!5
3

8 S Z1
3

2
2

ln 2

3 D , ~3.4!

where we used the shorthand notationZ5 ln X01CE, with
CE being Euler’s constant. Collecting Eqs.~3.1!–~3.3!, we
find

N~ t !5N0~w211BN!aNexp@cNw1O~w2!#

5N08~s1BN!aNF11
bNln s1cN

s

1OS ln2s

s2
,
ln s

s2
,
1

s2D G , ~3.5!

whereN0 is a nonuniversal constant,N08 is a nonuniversal
constant slightly different fromN0, and BN5AN /aN . The
first row of Eq.~3.5! and the result~2.16! constitute a para-
metric representation of the tuple (N,s) that is suitable for
comparison to numerical simulations. The second row of
~3.5! shows the more traditional form. The constantsaN ,
bN , cN , andBN are given by

aN52
g11g̃1

2b2
5

3

14
50.214 286, ~3.6a!

bN5aN

2b32z1b2

2b2
52

1195

2352
520.508 078, ~3.6b!

cN5
g21g̃2

2b2
2b3

g11g̃1

2b2
2

52
365

1568
1

9 ln 325 ln 4

112

520.206 387, ~3.6c!

BN5
7

4 S Z1
3

2
2

ln 2

3 D51.75Z12.220 66. ~3.6d!
1-4
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Note from Eqs.~2.15! and~3.5! that the arbitrary constantZ
could be eliminated by a rescaling of the nonuniversal ti
constantt0. This finding will also apply to the remaining
results stated below.

At this point we would like to warn against attempts
deduce the logarithmic corrections for dynamic quantit
from the logarithmic corrections calculated for static perc
lation. Grassberger@15#, for example, exploited the results o
Essamet al. @19# via replacingt by 1/t on the grounds tha
the critical exponentn t for the correlation time is one in
mean-field theory. This reasoning leads toN(t);@ ln(t)#2/7

@35#. From Eqs.~3.5! and ~3.6a!, however, we see that th
correct result, to leading order, isN(t);@ ln(t/t0)#

3/14. By
merely using the mean-field relation betweent and t one
misses contributions to the leading logarithmic term ste
ming from renormalization factors includingZ @cf. Eq.
~3.2!#. SinceZ is absent in static percolation@36#, one cannot
deduce the logarithmic behavior of the dynamic quan
N(t) from the known results for static percolation. Likewis
it should not be attempted to combine our dynamic resu
e.g., those forN(t) andR(t), to obtain predictions on loga
rithmic corrections in static percolation.

B. Radius of gyration

The mean square distance from the origin of the ac
particles is defined as

R~ t !25

E ddx x2G1,1~x,t !

2dE ddxG1,1~x,t !

52
] ln G1,1~q,t !

]q2 U
q50

.

~3.7!

From the scaling form~2.13!, it follows for t50 that

] ln G1,1~q,t !

]q2 U
q50

5
] ln G1,1~~ lm!21q,Zl~w!~ lm!2lt;0,w;1,1!

]q2 U
q50

5~ lm!22
] ln G1,1~q,X0 ;0,w;1,1!

]q2 U
q50

. ~3.8!

Incorporating the solutions to the appropriate characteris
and the results of the Appendix,

2
]

]q2
ln G1,1~q,lm2t5X0 ;0,w;1,1!uq50

5X0@11AR~X0!w1O~w2!#, ~3.9!

with

AR~X0!5
7

24S Z2
2

3
2

ln 2

7 D , ~3.10!
03613
e

s
-

-

y

s,

e

s

we find

t21R25R0
2~w211BR!aRexp„cRw1O~w2!…

5R08
2~s1BR!aRF11

bRln s1cR

s

1OS ln2s

s2
,
ln s

s2
,
1

s2D G , ~3.11!

with R0
2 and R08

2 being nonuniversal amplitudes. Here th
constantsaR , bR , cR , andBR5AR /aR are given by

aR52
z1

b2
5

1

6
50.166 666, ~3.12a!

bR5aR

2b32z1b2

2b2
52

1195

3024
520.395 172,

~3.12b!

cR5
z2

b2
2

z1b3

b2
2

52
937

6048
1

9 ln 325 ln 4

112
520.128 534,

~3.12c!

BR5
7

4 S Z2
2

3
2

ln 2

7 D51.75Z21.339 95. ~3.12d!

C. Survival probability

As shown in Ref.@37#, the survival probability of an ac-
tive cluster emanating from a seed at the origin is given

P~ t !52 lim
k→`

^e2kNs̃~2t !&, ~3.13!

where N5*ddxs(x,0). For the purpose of actual calcula
tions, it is convenient to rewrite Eq.~3.13! as

P~ t !52 lim
k→`

^ s̃~2t !&k52G0,1~Àt,t,k5`,u;l,m!,

~3.14!

where ^•••&k stands for averaging with respect to the r
sponse functionalJk that is obtained upon augmenting th
original response functional~2.2! by a sourcek(t)5kd(t)
conjugate to the fields:

Jk5J1E dtk~ t !N~ t !. ~3.15!

With this source present, one no longer has^s̃&50. To avoid
tadpoles in our perturbation calculation, we perform a sh
s̃→ s̃1M̃ so that^s̃&50 is restored. This procedure leads
the new response functional
1-5
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Jk5E ddxdtFl s̃S l21
]

]t
1~t2gM̃2¹2!1gS S2

1

2
s̃D D s

1lgM̃sS1S 2 Ṁ̃1ltM̃2
lg

2
M̃21kD sG . ~3.16!

Based on this functional we calculateG0,15M̃ to one-loop
order. Some details of this calculation are in the Append
We obtain

G0,1~ÀX0,0,k5`,w;1,1!}w21/2@11AP~X0!w1O~w2!#,
~3.17!

with the amplitudeAP(X0) reading

AP~X0!5
5

8 S Z112
11 ln 2

5 D . ~3.18!

Recalling the scaling form~2.13! and our choice for the flow
parameter we deduce that, fort50,

P~ t !52Z̃~w!1/2~m l !2G0,1~ÀX0,0,̀ ,w;1,1!. ~3.19!

Collecting, we then obtain

tP~ t !5P0~w211BP!aPexp@cPw1O~w2!#

5P08~s1BP!aPF11
bP ln s1cP

s
1OS ln2s

s2
,
ln s

s2
,
1

s2D G .

~3.20!

P0 and P08 are simply related nonuniversal amplitudes. T
constantsaP , bP , cP , andBP5AP /aP are given by

aP5
2z11b22g̃1

2b2
5

5

14
50.357 143, ~3.21a!

bP5aP

2b32z1b2

2b2
52

5975

7056
520.846 797,

~3.21b!

cP5
g̃222z2

2b2
1b3

2z12g̃1

2b2
2

5
1637

14 112
2

9 ln 325 ln 4

112

50.089 607, ~3.21c!

BP5
7

4 S Z112
11 ln 2

5 D51.75Z20.918 617.

~3.21d!

IV. DISCUSSION OF RESULTS
AND CONCLUDING REMARKS

As far as time dependent observables in percolation
concerned, we are not aware of any previous analytic w
addressing logarithmic corrections. More general, we do
03613
.

re
rk
ot

know of any work that has determined logarithmic corre
tions in percolation~static or dynamic, IP or DP! beyond the
leading corrections. Here we went beyond the leading ter
and hence we are confident that our results compare
with simulations, perhaps even quantitatively. For line
polymers it turned out that the knowledge of the leadi
logarithmic correction is not sufficient for a good agreeme
between simulation data and theory. Rather, the next to le
ing corrections turned out to be crucial in comparing nume
cal and analytical results. We expect the same for perc
tion. Indeed, preliminary Monte Carlo results corrobora
this expectation@17,18#.

Our results define a nonuniversal time scalet0. For times
t greater thant0, we expect the validity of our asymptoti
expansions. The time scalet0 can be utilized as a measure
quality for different microscopic models of dynamical perc
lation. Thus, our results may guide those performing simu
tions in choosing the most efficient model.

It is interesting to note that the time scalet0 has an analog
in quantum chromodynamics. For times greater thant0, the
model becomes asymptotically free. Thus, with the excha
of an infrared-free theory to an ultraviolet-free theory,t0
corresponds to the hadronization scale of quantum chro
dynamics. The dependence of our results on this dimensi
nonuniversal parametert0 parallels therefore the phenom
enon of dimensional transmutation in renormalizable asym
totically free quantum field theories that are naively sca
free.

Our results feature a mutual nonuniversal constant, v
Z. This constant could be eliminated by rescalingt0. One
might be tempted to think that one could eliminate the en
amplitudesAN(X0), and so on, from our results by rescalin
t0, and that the calculation of the amplitudes is hence su
fluous. One has to keep in mind, however, that one ha
chooset0 consistently for all observables. Thus, one can
remove the amplitudes simultaneously from all the obse
ables, and their calculation is indeed necessary.

We refrain from eliminatingZ from our results because
might be exploited, due to its nonuniversality, as a fit para
eter. By fittingZ one can compensate partially for the effe
of higher order terms that have been neglected in our ca
lations. In this sense one can think ofZ as mimicking these
higher order terms.

When written as an explicit function of time, the obser
ables of interest have fairly complicated formulas. Using
parametric representation in terms of the effective coupl
constantw eases this situation. Moreover, the time and
observables possess a nicely systematic expansion inw so
that it is straightforward to keep track of the different orde
in perturbation theory. In the traditional from, the orders a
not so clear cut because nested functions of logarithms h
to be compared. The parametric representations can be
veniently compared to simulations. Essentially, one j
needs to make parametric plots of the tuples (N,s), (R,s),
and (P,s), and then compare the numerical data to the
plots.

In order to improve the accuracy of our results, one ne
a refined quantitative knowledge of the Wilson function
Whereas the« expansion results for the critical percolatio
1-6



u

so
k.
ts
cu
he
s

fo
W
i
i

g
rd
ro
to

of

on
nt
n

e
m
ic

ite

ela-
ve

hed

is

LOGARITHMIC CORRECTIONS IN DYNAMIC . . . PHYSICAL REVIEW E 68, 036131 ~2003!
exponents have been improved by resummation techniq
such as Pade´-Borel resummation@34#, this kind of refine-
ment has not yet been achieved for the percolation Wil
functions. Here lies an opportunity for useful future wor
Another possibility for future work is to improve the resul
on static percolation mentioned in the Introduction by cal
lating the next to leading logarithmic corrections. With t
kind of field theoretic methods that we applied here, this i
reasonable task.

Apparently, firm numerical results that are suitable
comparison to our analytical results are not available yet.
hope, however, that our work triggers increasing efforts
this direction, and that corresponding numerical results w
be available in the near future.
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APPENDIX: EXPLICIT CALCULATION OF GREEN’S
FUNCTIONS

In this appendix we outline our one-loop calculation
the scaling functions belonging to the Green’s functionsG1,1
andG0,1. In particular, we compute the amplitudesAN(X0),
AP(X0), andAR(X0) entering the logarithmic corrections.

1. Green’s function G1,1

A first step of any diagrammatic perturbation calculati
is, of course, the determination of the constituting eleme
From the response functional~2.2! we gather the Gaussia
propagator

G~q,t !5u~ t !exp@2l~t1q2!t# ~A1!

and the three-leg verticeslg and2l2gu(t2t8), whereu(t)
denotes the step function. With these elements, the s
energy S(q,t) is given at one-loop order by the diagra
depicted in Fig. 1. This diagram stands for the mathemat
formula

S~q,t !52l3g2E
0

t

dt8E
p
G~p,t8!G~qÀp,t !. ~A2!

FIG. 1. Self-energyS(q,t) at one-loop order.
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After integrating out the loop momentum we can rewr
S(q,t) as

S~q,t !52
~lg!2

~4p!d/2
~lt !12d/2

3E
0

1

ds
exp$2lt@~11s!t1sq2/~11s!#%

~11s!d/2
.

~A3!
For our purposes we need Green’s or connected corr

tion functions rather than vertex functions. Hence, we ha
to consider Feynman diagrams with external legs attac
rather than amputated diagrams. The Green’s functionG1,1 is
determined by the Dyson equation

G1,1~q,t !5G~q,t !1E
0

t

dt8E
0

t8
dt9G~q,t2t8!

3S~q,t82t9!G~q,t9!1•••. ~A4!

A diagrammatic representation of the Dyson equation
given in Fig. 2. Upon substituting Eq.~A3! into ~A4! we
obtain after an integration

G1,1~q,t !5G~q,t !F12
u~lm2t !«/2

G~11«/2!
E

0

1 ds

~11s!d/2

3E
0

1

dx~12x!x12d/2exp@a~s!x#G . ~A5!

Here, we used the shorthand notation

a~s!5S q2

11s
2~11s!t Dlt. ~A6!

Now, we sett50 and expand Eq.~A5! to order q2. The
integrations are easily performed. After« expansion we get

G1,1~q,t !5G~q,t !H 11
u~lm2t !«/2

G~11«/2! F S 3

4«
1

9

16
2

ln 2

8 D
2S 7

12«
2

7

36
2

ln 2

24 Dlq2t G J . ~A7!

The next step is to remove the« poles by employing the

renormalization scheme~2.4!. Letting G1,1→G° 1,1, l→l° ,
and using

FIG. 2. Dyson equation~A4! to one-loop order.
1-7
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G1,15~ Z̃Z!21/2G° 1,15S 12
3u

4« DG° 1,1 ~A8!

as well as

l° 5~ Z̃/Z!1/2l5S 12
7u

12« Dl, ~A9!

we observe that the« poles are indeed removed. For th
renormalized Green’s function we obtain

G1,1~q,t !5G~q,t !H 11
3u

8 S ln ~lm2t !1CE1
3

2
2

ln 2

3 D
2

7u

24 S ln ~lm2t !1CE2
2

3
2

ln 2

7 Dlq2tJ .

~A10!

Two results important for the logarithmic correction c
be extracted from Eq.~A10!. Upon settingq50 we find

G1,1~q50,lm2t5X0 ;t50,w;1,1!511
3

8 S Z1
3

2
2

ln 2

3 Dw,

~A11!

and hence the amplitudeAN(X0) as stated in Eq.~3.3!.
Moreover, we get

2X0
21 ]

]q2
ln G1,1~q,lm2t5X0 ;t50,w;1,1!uq250

511
7

24S Z2
2

3
2

ln 2

7 Dw, ~A12!

which leads to our result forAR(X0) given in Eq.~3.10!.

2. Green’s function G0,1

Now we determineG0,1 as required in Eq.~3.14!. The
diagrammatic elements associated with the functional~3.16!
comprise the two vertices encountered above. In addit
there is a third vertex, viz., the one depicted in Fig. 3~a!. The
Gaussian propagator for the new functional has to be de
mined from the differential equation

FIG. 3. ~a! The new vertex2l2gM̃u(t2t8) and ~b! the one-
loop tadpole diagram T~t!.
03613
n,

r-

@l21] t1t2gM̃~ t !1q2#Ḡ~q,t,t8!5l21d~ t2t8!.
~A13!

To avoid tadpoles,M̃ (t) has to satisfy the differential equa
tion

Ṁ̃ ~ t !2ltM̃ ~ t !1
lg

2
M̃ ~ t !22k~ t !1T~ t !50. ~A14!

At one-loop order, the tadpoleT(t) is given by the diagram
shown in Fig. 3~b!.

The initial and terminal conditions for the fields neces
tate the ansatzM̃ (t)52u(2t)K(2t)21. The type of the
source term,k(t)5kd(t) with k→`, demands the initial
condition K(0)50. With this information, the differentia
equation~A14! can be transformed without much effort int
the integral equation

K~ t !1
g

2t
5elttS E

0

t

dt8e2ltt8K~ t8!2T~2t8!1
g

2t D .

~A15!

At mean field level, the solution to Eq.~A15! is given by

K0~ t !5
g

2t
~eltt21!. ~A16!

Inserting the correspondingM̃0(t)52K0(2t)21 into the
differential equation~A13!, we find the modified Gaussia
propagator

Ḡ0~q,t,t8!5u~ t2t8!S K0~2t !

K0~2t8!
D 2

exp@l~t2q2!~ t2t8!#.

~A17!

Having the modified Gaussian propagator at our dema
we are now in the position to calculate the diagram depic
in Fig. 3~b!. Eventually, we obtain

K~ t !2T~2t !5l3g2K0~ t !22E
0

t

dt8E
t8

t

dt9

3
K0~ t8!K0~ t9!2exp@lt~2t2t82t9!#

@4pl~2t2t82t9!#d/2
.

~A18!

The further evaluation of Eq.~A18! is fairly straightforward
for t50. Away from criticality, the calculation is more cha
lenging and will be addressed in a future publication@38#.
Here, we find fort50 and after« expansion
1-8
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K~ t !2T~2t !52
lg3~lt !«/2

~4p!d/2 S 5

8«
1

5

8
2

11 ln 2

16 D .

~A19!

Insertion of this intermediate result into Eq.~A15! yields

K~ t !5
glt

2 F12
u~lm2t !«/2

G~11«/2! S 5

4«
1

5

8
2

11 ln 2

8 D G .
~A20!

Next, we renormalize. Indicating the consistency of our p
vious steps, the appropriate combination of renormaliza
factors (ZZ̃/Zu)21/25115u/(4«)1••• cancels the« pole
Ph

on

-

.

nt

03613
-
n

in Eq. ~A20!. The renormalizedK(t) reads

K~ t !5
glt

2 F12
5u

8 S ln ~lm2t !1CE112
11 ln 2

5 D G .
~A21!

Exploiting G0,1(2t)5K(t)21 and lm2t5X0 as well as re-
calling the definition ofZ, we finally obtain

~4p!3/2X0

2
G0,1~2lm2t5X0 ;t50,w;1,1!

5w21/2F11
5

8 S Z112
11 ln 2

5 DwG . ~A22!
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